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Abstract. An elastica has been recently quantized with the Bernoulli–Euler functional in two-
dimensional space using the modified Korteweg–de Vries hierarchy. In this paper a Willmore
surface is quantized, or equivalently a surface with the Polyakov extrinsic curvature action, using
the modified Novikov–Veselov (MNV) equation. In other words, it is shown that the density of
states of the partition function for the quantized Willmore surface is expressed by the volume
of a subspace of the moduli of the MNV equation.

1. Introduction

In a series of works [1–7], the correspondence between an immersed object and the Dirac
operator confined there has been considered. The Dirac operator confined in an immersed
object is uniquely determined by the procedure which was proposed previously [1–4] and
can be regarded as the representation matrix of the symmetry of the immersed object [1–7].
It had been studied mainly on an elastica in a plane [1–6], which is a model of a thin elastic
rod. Then it was shown that the Dirac operator confined in an elastica can be identified
with the Lax operator of the modified Korteweg–de Vries (MKdV) equation (1.5) while the
mathematical deformation of the elastica obeys the MKdV hierarchy [6, 7]. By investigating
other quantum equations [8–9], it is conjectured that such correspondence between the Dirac
operator and its geometry can be extended to higher-dimensional immersed objects [2–4].

Recently Konopelchenko [10, 11] discovered that a conformal surfaceS immersed
in three-dimensional flat spaceR3 obeys the Dirac equation, which we will call the
Konopelchenko–Kenmotsu–Weierstrass–Enneper (KKWE) [10–15] equation here

∂f1 = Vf2 ∂̄f2 = −Vf1 (1.1)

where

V := 1
2

√
ρH (1.2)

H is the mean curvature of the surfaceS parametrized by complexz andρ is the conformal
metric induced fromR3. The KKWE equation completely exhibits immersed geometry
as the old Weierstrass–Enneper equation expresses the minimal surface [10–15]. In [16]
we show that it is identified with the Dirac operator confined in the surfaceS using my
confinement procedure. By quantizing the Dirac field we find that the quantized symmetry
of the Dirac operator is also in agreement with the symmetry of the surface itself [17].
In other words, this KKWE equation is the equation which was conjectured before [2, 3]
and had been searched for. Although for a more general surface, which is not conformal,
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the KKWE type equation was discovered by Burgress and Jensen [18] following from
prescriptions [1], their equation is not easy to deal with and we could not find meaningful
results. However, the KKWE equation is very useful in investigating the immersed object
and in terms of (1.1), Konopelchenko, Taimanov and other Russian groups find non-trivial
results related to the immersed surface [10–14, 19, 20].

By physical investigation of the KKWE equation and its quantized version, the Willmore
functional [21, 22] and the modified Novikov–Veselov (MNV) equation naturally appear
[10–14, 17, 19, 20]. The Willmore functional is given as

W =
∫
S

dvolH 2 (1.3)

where ‘dvol’ is a volume form of the surfaceS. The harmonic map associated with this
functional has been studied in differential geometry [21, 22].

On the other hand, Polyakov introduced an extrinsic curvature action in string theory and
the theory of two-dimensional gravity from renormalizability [23]. However, his action is
just the Willmore functional (1.3). Thus, his programme was recently investigated by Carroll
and Konopelchenko [19] and Grinevich and Schmidt [20] using the KKWE equation (1.1).
The main aim of this paper is to quantize the Willmore surface but it must be emphasized
that this involves the study of the quantization of the Polyakov extrinsic curvature action.

It should be noted that the elastica problem ofR2 has a very similar structure to that
of the Willmore surface problem ofR3 [10–14]. Corresponding to the Willmore functional
(1.3), there is the Bernoulli–Euler functional for an elastica inR2 [24]

E =
∫

dq1 k2 (1.4)

wherek is a curvature of the elastica [24]. Mathematically speaking, an elastica is a non-
stretching curve immersed in a higher-dimensional manifold, e.g.R2, realized as a minimal
point of the energy functional (1.4). For the case of then-dimensional manifoldn > 3, the
Bernoulli–Euler functional is sometimes modified. Whereas the Willmore surface is related
to the MNV equation, the elastica is related to the MKdV equation [1–7, 25–27].

Recently we have quantized exactly the elastica of the Bernoulli–Euler functional (1.4)
preserving its local length [25]. Then it was found that its moduli are completely represented
by the MKdV equation and are closely related to the two-dimensional quantum gravity
[28–30]. The quantized elastica obeys the MKdV hierarchy and at a critical point, the
Painlev́e equation of the first kind appears [25] while in the quantized two-dimensional
gravity which is defined at a critical point of the discrete tiling model, the Painlevé equation
of the first kind appears with the Korteweg–de Vries (KdV) hierarchy [28–30].

In this paper, instead of preserving the local length, we require that the surface retains
its conformal structure and we quantize the Willmore functional. Then, it will be shown
that the MNV equation appears as the virtual quantized motion of a Willmore surface in
the path integral.

The organization of this paper is as follows. Section 2 reviews the argument of the
quantized elastica following that in [25]. In section 3, we quantize the Willmore surface
and then the density of states of the Willmore functional is given as a volume determined
by the MNV equation. Section 4 discusses these results.

2. Quantization of elastica

Whereas studies on the Willmore functional are current and proceeding now, those of
the elastica have a long history. The problem of an elastica inR2 was proposed in the



Density of state of quantized Willmore surface 3597

17th century. Its static properties were investigated by Euler and Bernoulli’s family in
the 17th and 18th centuries and were completely classified by Euler [24]. However, its
dynamics are very difficult and were partially studied related to the MKdV equation [6, 7].
The energy functional of the dynamics of the elastica includes a kinematic term added to
(1.4). Since the kinematic term weakly prevents the integrable properties of the elastica’s
development through physical time, an elastica is not governed in general by the MKdV
equation but approximately obeys the MKdV equation [6, 7]. However, the mathematical
deformation of the elastica with only the potential energy or the Bernoulli–Euler functional
(1.4) has a structure of MKdV hierarchy [6, 25–27]. When one deals with a mathematical
deformation, we encounter another ‘time’ as a deformation parameter. Readers should
note that in [25–27] and in this paper, the word ‘time’ is used in this sense but it should
not be confused with a physical (real) time [6,7]. The MKdV equation and hierarchy is
well studied, at least formally, using the Jimbo–Miwa theory [31] and the mathematical
deformation of a curve has been investigated by Goldstein and Petrich [26, 27]. Based on
well established theories, we could quantize the elastica using the MKdV hierarchy and
inspect it as in [25].

On the other hand, studies on the Willmore surface and the MNV equation have only a
short history and thus are not well established. Accordingly in this article, we will quantize
the Willmore surface along the lines of the quantization procedure of the elastica. Thus,
before we describe the Willmore surface, in this section, we will review the calculation
scheme of the partition function of elastica which was discovered in [25] and is interpreted
as quantization of elastica.

We denote byC a shape of an elastica (an ideal thin elastic rod or a real one-dimensional
curve) immersed in a complex planeC and byX(s) its affine vector [6]

S1 3 s 7→ X(s) ∈ C ⊂ C X(s + L) = X(s) (2.1)

whereL is the length of the elastica. We fix the metric of the curveC induced from
the natural metric ofC; ds = (dX dX̄)1/2. The Frenet–Serret relations are expressed as
[6, 25–27]

ψ0 := exp(iφ/2) =
√
∂sX (2.2)(

∂s v

v −∂s

)(
ψ0

iψ0

)
= 0 v := 1

2
k := 1

2
∂sφ (2.3)

whereφ is a real valued function ofs andk is the curvature of the curveC, φ(s+L) = φ(s)
andk(s + L) = k(s).

The energy functional of the elastica, which we will call the Bernoulli–Euler functional
here [24], is given as

E =
∫ L

0
ds k2 = 4

∫ L

0
ds v2. (2.4)

An elastica is defined as a non-stretching curve realized as a stationary point of the
energy functional (2.4). In other words, an elastica is a model of a thin elastic rod; the
elastic force comes from its thickness and elasticity but one can assume that its thickness
is negligible so that it is interpreted as a mathematical curve [24]. Here readers should not
mix an elastica and a ‘string’ in string theory up by mistake because (2.4) does differ from
the Nambu–Goto action and ordinary Polyakov action of an ordinary string in string theory
[23]; a ‘string’ in string theory is a relativistic curve and is a surface including its trajectory
while string in the violin resembles an elastica rather than a ‘string’ even though a primary
text book of string theory might illustrate a mode of a ‘string’ using the oscillation of a
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violin. From this point, we will only use the term ‘string’ in the sense of string theory with
discriminating from elastica.

We assume that the elastica is closed and preserves its local infinitesimal length in the
quantization process. It does not stretch. The partition function of the elastica is given
as [25]

Z =
∫
DX exp

(
− β

∫ L

0
ds k2

)
(2.5)

whereβ is a quantization parameter;β can be regarded as the inverse of Planck constant
h̄ for Euclidean quantum mechanics and also as the inverse of temperature for problems of
statistical mechanics.

Here we note that there are trivial symmetries on this system and that the partition
function (2.5) naturally diverges [25]. For an affine transformation (translation and rotation)
and a reparametrization ofS1, X(s) → X0 + eiφ0X(s + s0), (X0, φ0 and s0 are constants
of s) and the curvaturek and the energy functional (2.4) are invariant. In other words,
these are gauge freedoms and the energy functional (2.4) has infinitely degenerate states.
By philosophies of the functional integral in which we must sum over all possible states,
Z includes the integration overC induced by the translation and naturally diverges. Hence
we regularize it

Zreg= Z
Vol(Aff )L

(2.6)

where Vol(Aff ) and L is the volume of the trivial space in which the Bernoulli–Euler
functional is invariant for the affine transformation and the reparametrization of the origin
of S1 [25]. As we show later, the measure in (2.6) can be regarded as the Haar measure of
a group manifold which exhibits the symmetry of this quantized system, this regularization
can be interpreted as the quotient space of a total group manifold by these transformation
groups as normal subgroups. By the regularization, we can concentrate on classifying shape
of the elastica itself. In other words, we choose the origin ofs, a starting point and its
tangential angle of the elastica inC as a representative of the operator domain for these
transformation groups.

Next, we consider the condition of local length preservation. In the path integral, we
must pay attention to the higher perturbations ofε to gain an exact result. Hence we assume
thatX is parametrized by a parametert and that the difference between the perturbed affine
vectorXε and the unperturbed oneX can be expressed by [6, 25–27]

Xε(s, t) := eε∂tXqcl(s, t) ε∂tX = Xε −X +O(ε2) (2.7)

with the relation

−∂tXqcl = (u1+ iu2) exp(iφqcl) u1(L) = u1(0) u2(L) = u2(0) (2.8)

whereu are real functions ofs and t . This is virtual dynamics of the curve [6]. As well
as the argument in [6, 25–27], due to the isometry condition, we require [∂t , ∂s ] = 0 for
X. Then the isometry condition exactly preserves, ds ≡ dsε for dsε :=

√
∂sX̄ε∂sXε ds.

Even thoughε is constant, dependence of the variation upon the positions comes from
the ‘equation of motion’ (2.8) andua(s), a = 1, 2. Hence the deformation (2.7) contains
non-trivial ones.

From [∂t , ∂s ] = 0, we have the relation [26, 27]

−∂t exp(iφqcl) = ((∂su1− u2kqcl)+ i(∂su2+ u1k)) exp(iφqcl). (2.9)
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Noting thatφ andu are real valued, (2.9) is reduced to two coupled differential equations
and by partially solving one of them, we obtain the ‘equation of motion’ of the deformation

∂su1 = kqclu2 u1 =
∫ s

ds u2kqcl =: ∂−1
s u2kqcl

∂tk = −�u2. (2.10)

Here ∂−1
s is the pseudo-differential operator with a parameterc ∈ R as an integral

constant and

� := ∂2
s + ∂skqcl∂

−1
s kqcl (2.11)

is the Gel’fand–Dikii operator for the MKdV equation [26, 27].
In [6, 25], instead of the single deformation parameter, we use the infinite dimensional

parameterst = (t1, t3, . . .) and investigate the moduli space of the partition function. Then
the minimal set of the virtual equations of motion, which are satisfied with certain physical
requirements, is given as

∂t2n+1kqcl = −�n∂skqcl ∂t2n+3kqcl = �∂t2n+1kqcl (n = 1, 2, . . .). (2.12)

They are the MKdV hierarchy [27, 28]. As in [6], these relations (2.12) should be regarded
as the Noether currents for the immersed object andt should be considered as the Schwinger
proper times, in [25] it was shown that (2.12) means the quantum fluctuations and currents
given by the quantized Noether theorem or the Ward–Takahashi identities.

However, by studying the moduli of the quantized elastica, the non-trivial deformation
obeys the MKdV equation, which is obtained asu = ∂sk (k = 2v) in (2.10)

∂tv + 6v2∂sv + ∂3
s v = 0 (2.13)

because the solutions of the higher order equations belonging to the MKdV hierarchy are
also satisfied with the MKdV equation.

Here it is a very remarkable fact that for the variation oft to obey the MKdV equation,
the Bernoulli–Euler functional is invariant

∂t

∫
ds v(s, t)2 = 1

4
∂tE = 0 (2.14)

because

∂t

∫
ds v2 = −

∫
ds ∂s

(
3

2
v4+ 1

2
(v∂2

s v − (∂sv)2
)
= 0. (2.15)

Since the MKdV problem is an initial value problem, for any regular shape of elastica
satisfied by the boundary conditions, the ‘time’t development of its curvature can be
expressed by (2.13). In other words, for any given regular curve as an initial condition,
there exists a family of solutions of the MKdV equation (2.13) as an orbit which contain
the given curve. Due to the integrability and (2.14), during the motion oft , the energy
functional does not change its value. Hence the trajectory of the deformation parametert

draws a curve in the functional space which has the same value of the energy functional
(2.4). This reminds us of the fact that in group theory the character of a group is invariant
among the elements belonging to the same conjugate class. In fact in Jimbo–Miwa theory,
the solution space of the MKdV equation is acted by the affine Lie algebraA

(1)
1 [31].

Thus we can estimate the functional space for each functional value. In other words
by investigating the subset of the moduli of the MKdV equation which is satisfied with the
boundary conditions

v(0) = v(L) X(0) = X(L) (2.16)
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the measure of the functional integral (2.6) dµ can be decomposed

dµ =
∑
E

dµE. (2.17)

So we denote by4E the set of these trajectories which occupy the same energyE.
Hence the partition function can be represented as

Zreg=
∫

dµ exp(−βE) =
∑
E

exp(−βE)
∫
4E

dµE =
∑
E

exp(−βE)Vol(4E) (2.18)

where

Vol(4E) =
∫
4E

dµE (2.19)

is the volume of the trajectories4E .
In [25], we explicitly express dµ in terms of the solution space and the moduli of the

MKdV equation. It is well known that any solution of the MKdV equation can be expressed
by the hyperelliptic function and its moduli agree with those of the Jacobi varieties of the
hyperelliptic curves [32,35]. Further the moduli of the hyperelliptic curves are a subset of the
Siegel upper space [32, 35]. According to the arguments in [25], even though we introduce
the infinite dimensional coordinatest in (2.12), they are often reduced to finite-dimensional
space, as the Jacobi variety of a hyperelliptic curve with finite dimension is embedded in
the universal Grassmannian manifold in Sato theory [25, 31, 32]. Using the genusg of
the hyperelliptic curves,(4E, dµE) can be decomposed as(4E, dµE) =

∐
g(4

(g)

E , dµ(g)E ),

where most4(g)E are empty sets for givenE and their volume vanishes. In [25], we show
that4(g)E is given as the real subspace of the Jacobi variety corresponding to the hyperelliptic
curve with genusg, which is the trajectory space of the solution of the MKdV equation.
For the case of a solution represented by the hyperelliptic function of genusg, dµ(g)E is
locally expressed as dt3∧ dt5∧ · · · ∧ dt2g−1 wheretg := (t1, t3, . . . , t2g−1) is a subset of the
infinite-dimensional deformation parameterst in (2.12). Hence (2.19) becomes

Vol(4E) =
∑
g

Vol(4(g)E ) =
∑
g

∫
4
(g)

E

dµ(g)E . (2.20)

Thus the volume of4(g)E is estimated by the unit of the elastica lengthL; due to the
complex structure of the Jacobi variety of the hyperelliptic curve and that it admits the
coordinate transformations such as rotation, the volume can be evaluated in terms of the
elastica lengthL [25, 32, 35].

However, since the dimension of the non-empty trajectory space4
(g)

E is g, a sum of the
terms with different dimensional volume appears in (2.18). It seems to be fancy but noting
the facts that the dimension of the energy functionalE is the inverse of the length and
β/[length] is of order unity, the multiple of the length can be interpreted as the multiple of
the quantization parameterβ−1. Hence such summation has a physical meaning.

The space of the formal direct sum set
∐
E 4E is acted by the infinite-dimensional Lie

group associated with the infinite-dimensional Lie algebraA
(1)
1 with restrictions due to the

boundary condition (2.16) [31]. The space
∐
E 4E can be regarded as a group manifold

and the measure dµ in the space can be interpreted as the Haar measure over the group
manifold. In other words, the functional integral (2.5) reduces to the integral over the group
manifold. Using natural topology induced from the group action, the distance in abstract
space is naturally defined and parametrized byβ. Due to such a group structure, the division
by the affine group in (2.6) is justified.



Density of state of quantized Willmore surface 3601

Furthermore, deformation of the trajectory space4
(g)

E is equivalent to deformation of its
corresponding Jacobi variety and implies a change of the energyE. Since the Jacobi variety
of the hyperelliptic curve is classified by its modulus, or a point of the Siegel upper half
plane [35], the deformation is expressed by an orbit in the moduli of the Jacobi varieties.
A shape of the quantized elastica can be determined as a point of the trajectory space4

(g)

E

of a solution of the MKdV equation after fixing the solution, or a point of the moduli,
of the MKdV equation [25]. Hence for any energy interval(E,E + δE), by using the
theorem on implicit function and noting the boundary condition (2.16), one may evaluate
the distribution of the volume of trajectory spaces overE. For sufficiently smallδE, the
distribution is expressed by the product of Vol(4

(g)

E ) and the volume of a subset of the
moduli of the Jacobi variety�g(E) corresponding to(E,E + dE)

Zreg=
∫

dE

(∑
g

Vol(4(g)E )�g(E)

)
exp(−βE). (2.21)

Here the subset is given as the restriction of the moduli owing to the boundary condition
(2.16) [25]. Hence (2.18) and (2.21) mean that the density of states of the Bernoulli–Euler
functional system is completely represented by the moduli and solution spaces of the MKdV
equation.

3. Quantization of Willmore surface

As the quantization procedure of an elastica has been reviewed, in this section, we investigate
the quantization of a Willmore surface along the lines of the argument described in the
previous section.

We denote byS a shape of a compact conformal surface immersed in the three-
dimensional spaceR3 ≈ C× R, and by(Z(z, z̄) := X1+ iX2, X3(z, z̄)) its affine vector

6 3 z 7→ (Z,X3) ∈ S ⊂ C× R. (3.1)

Here 6 can be expressed as6 = C/0 where 0 is a Fuchsian group and then6 is
a complex analytic object [33]. The volume element and the infinitesimal length of the
surfaceS induced fromR3 are given by

dvol= i

2
ρ dz ∧ dz̄ =:

i

2
ρ d2z ds2 = ρ dz dz̄. (3.2)

The Konopelchenko–Kenmotsu–Weierstrass–Enneper (KKWE) relation is then ex-
pressed as

ψ+ = i
√
∂̄Z̄ ψ− = −i

√
∂Z̄ ∂X3 = −ψ̄+ψ̄− (3.3)

/Dψ =
(
∂ −V
V ∂̄

)(
ψ+
ψ−

)
= 0 V = 1

2
Hρ (3.4)

where ∂ := ∂/∂z (∂̄ := ∂/∂z̄), V is a real valued function ofz and z̄ and H is the
mean curvature ofS [10–14]. More general form of (3.4) for a non-conformal surface
was calculated by Burgess and Jensen [18] following a prescription of the confinement
Dirac operator [1]. Their equation in [18] is complicated but if one requires the conformal
structure for the surface, the equation becomes simpler and given by (3.4) [16] as the
isometry condition makes the Frenet–Serret relation simple like (2.2).

The energy integral of the Willmore surface or the Polyakov extrinsic curvature action
is given as

E =
∫
ρ d2zH 2 = 4

∫
d2z V 2 (3.5)
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the Willmore surface is realized as its stationary point.
In the same way that the elastica is quantized using the MKdV equation [25], we

consider quantization of such a surface. The partition function of the surface is also given
as [25]

Z̃reg=
∫
DX exp(−β ∫ ρ d2zH 2)

Vol(Aff )Vol(Conf)
(3.6)

where Vol(Aff ) and Vol(Conf) mean the volume of the group of the affine transformations,
and the conformal reparametrization of6 → 6, respectively. The Willmore functional is
also invariant for the translation of the centroid of the surface, special orthogonal rotation
SO(3) and the reparametrization of6. The measure in (3.6) might be the Haar measure of
a symmetry group of this system. Dividing them as a group by these trivial transformations
groups, we bring our attention to bear on the shape of the surface inR3.

We search for the deformation flow of the surface which preserves the Willmore
functional or the Polyakov extrinsic curvature action and conformal structure. Our question
is what equation the deformation flow obeys. Taimanov and Konopelchenko produced
an answer to the question; the modified Novikov–Veselov (MNV) equation preserves the
conformal structure ofS and the functional (3.5) [10–14].

The MNV equation is given as

Vt = Vt+ + Vt− Vt+ = ∂3V + 3∂VU + 3
2V ∂U Vt− = ∂̄3V + 3∂̄V Ū + 3

2V ∂̄Ū

∂̄U = ∂V 2 ∂Ū = ∂̄V 2. (3.7)

Along the curvez = z̄, the MNV equation (3.7) is reduced to the MKdV equation (2.13).
As the Frenet–Serret relation can be regarded as the inverse scattering system of the

MKdV equation, the KKWE equation can also be regarded as the inverse scattering system
of the MNV equation.

(∂t± − B±)/D + [/D, A±] = 0 (3.8)

recovers (3.7) for

A+ =
(
∂3 −3(∂V )∂ + 3VU

0 ∂3+ 3U∂ + 3(∂U)/2

)
B+ = 3

(
0 (∂V )∂ − VU

−(∂V )∂ − (∂2V )− UV 0

)
A− =

(
∂̄3+ Ū ∂̄ + 3∂̄Ū/2 0

3∂̄V ∂̄ − 3V Ū ∂̄3

)
B− = 3

(
0 (∂̄V )∂̄ + (∂̄2V )− V Ū

−(∂̄V )∂̄ + V Ū 0

)
. (3.9)

The variation of the Dirac field is given as

∂tψ = ∂t+ψ + ∂t−ψ ∂t±ψ = A±ψ. (3.10)

For the variation oft obeying the MNV equation, the Willmore functional is invariant

4∂t

∫
d2z V 2 = ∂tE = 0 (3.11)

because the integrand can be expressed by the boundary quantities [13]

V 2
t = ∂(V ∂2V − 1

2(∂V )
2+ 3

2V
2U)+ ∂̄(V ∂̄2V − 1

2(∂̄V )
2+ 3

2V
2Ū ). (3.12)

Next we check whether the conformal structure of the surface for the MNV flow is
preserved following the argument of Taimanov.
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First, we remark that the metric is represented by the Dirac field as

ρ = (|ψ1|2+ |ψ2|2)2 (3.13)

owing to the relation (3.3). Thus, if the relation (3.3) is covariant or preserves for the MNV
flow, the conformal structure (3.13) is maintained.

Thus, we evaluate∂tZ = ∂t+Z + ∂t−Z and ∂tX3. By straightforward computations,
these values are calculated as [13]

∂t±Z = 2i
∫ z(z̄)

d(f± + g±) (3.14)

and

∂tX
3 = −

∫ z(z̄)

d(h1+ h2) (3.15)

where

f+ := 3
2Uψ

2
− g+ := ψ−∂2ψ− − 1

2(∂ψ−)
2

f− := 3
2Ūψ

2
+ g− := ψ+∂̄2ψ+ − 1

2(∂̄ψ+)
2 (3.16)

h1 = ψ̄+∂2ψ− + ψ−∂2ψ̄+ − ∂ψ−∂ψ̄+ + 3Uψ̄+ψ−
h2 = ψ+∂̄2ψ̄− + ψ̄−∂̄2ψ+ − ∂̄ψ̄−∂̄ψ+ + 3Ūψ+ψ̄− (3.17)

U(+) = U andU(−) = Ū . Here df = ∂f dz+ ∂̄f dz̄.
Let the infinitesimal flow obeying the MNV equation (3.7) moduleε2 be denoted as

(Zε,X
3
ε ) := (Z,X3)+ ε∂t (Z,X3)+O(ε2). (3.18)

(3.14)–(3.17) mean that the infinitesimal variation is given as the integral of the closed form
defined over6 [34] and can be regarded as a single function of6. Since(Z,X3) is also
a periodic function of6, (Zε,X3

ε ) is globally defined over6 as a function of6.
On the other hand, (3.14)–(3.17) guarantee that [∂, ∂̄]Xiε = 0, which means that we can

locally define the independent coordinatesz and z̄ for theXiε surface; we can locally find a
complex coordinate system of an open set of6. Furthermore, due to the global properties,
their coordinate system can be extended to the global coordinate and the connection of each
open set is trivial due to [∂, ∂̄]Xiε = 0 for any point of6.

Hence, the MNV flow preserves the conformal structure of the surfaceS.
We wish to emphasize that the MNV problem is also an initial value problem: for any

shape of compact conformal surface, the ‘time’t of development of the surface obeying the
MNVV equation (3.7) can be expressed and this flow conserves the energy functional and
conformal structure. Hence the trajectory of the deformation parametert give states of the
same energy and its volume is the degeneracy of each energyE.

As in the quantization of elastica, the measure of the functional integral dµ can be
decomposed

dµ̃ =
∑
E

dµ̃E (3.19)

and the moduli ofZ̃reg restricted byE denoted as̃4E

Z̃reg=
∫

dµ̃ exp(−βE) =
∑
E

exp(−βE)
∫
4̃E

dµ̃E =
∑
E

exp(−βE)Vol(4̃E). (3.20)

As for the case of the Bernoulli–Euler functional, the density of the states of the Willmore
functional system might be completely represented by the moduli of the MNV equation.
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However, the Willmore surfaceS in R3 has no natural measure of length from the
point of view of the value of the Willmore functional (3.5) because for a global scale
transformation inR3 z → λz (λ > 0), the mean curvature changes asH → H/λ and the
Willmore surface is invariant. Hence for a given energyE, there are infinite degenerate
states related to the global scaling parameterλ ∈ (0,∞) and the regularized partition
function Z̃reg also diverges.

However, along the curve ofz = z̄, the MNV flow obeys the MKdV equation which
conserves the local length of the curve. Thus, using the conformal reparametrization, we
adjust the parametrization ofz so that the curve is in a flat plane; we suppress conformal
freedom of the surface by fixing such parametrizationz. On the MNV flow, the length
of the curve is also a conserved quantity and is well defined. Due to the compactness of
the surfaceS, L must be finite. Hence in terms of this length, I can redefine the partition
function by fixing the length of the curve

Zreg := Z̃reg|(the length ofz=z̄)=L. (3.21)

After we fix the scale of the surfaceS, we can define the decomposed measure and the
space of trajectories by the restriction, dµE,L := dµ̃E|L, 4E,L := 4̃L|L

Zreg=
∑
E

∫
4E,L

dµ̃E,L exp(−βE) =
∑
E

exp(−βE)Vol(4E,L). (3.22)

The physical meaning of the summation in (3.22) is justified similarly to (2.21).
Since the MKdV equation is embedded in the MNV equation as the equation of motion

of its equatorz = z̄, the space of the trajectories of the MNV equation can be classified by
the genusg of the MKdV equation. Furthermore, the moduli of the MNV equation might
be expressed by those of the Jacobi variety, at least, as the moduli of the equation of its
equator by the restriction. Thus a shape of the Willmore surface can be determined as a
point of the trajectory space of a solution of the MNV equation after fixing the solution
or a point of the moduli of the MNV equation. By knowledge of the moduli of the MNV
equation, one can evaluate the density of states of the Willmore surface using the theorem
of implicit function like (2.21). Equation (3.22) can be expressed as

Zreg=
∫

dE

(∑
g

Vol(4(g)E,L)�g(E)

)
exp(−βE) (3.23)

where�g(E) is the volume of the subset of the moduli of the Jacobi variety of the MNV
equation in which the Willmore surfaces are satisfied with the boundary condition and have
energy belonging to(E,E + dE).

Thus it means that quantization of the Willmore surface can be done using the structure
of the moduli of the MNV equation.

4. Discussion

Carroll and Konopelchenko proved that the MNV flow conserves the extrinsic string action
for the case whereρH is constant; here the extrinsic string action consists of the Nambu–
Goto action, the Wess–Zumino–Witten type geometrical action, and the Polyakov extrinsic
curvature action (3.3). Hence our result (3.2) can be extended to such a case and then it
means that the algorithm of the calculation of the partition function of the extrinsic string
in R3 is essentially the same as in earlier arguments. In other words, the quantization of
the string immersed inR3 can be partially performed although only string inRn n < 3 has
been studied as a two-dimensional gravity [28–30].



Density of state of quantized Willmore surface 3605

In [2] and [3], it is stated that as the self-dual Yang–Mills equation can be expressed by
an integrable equation and that its solutions can be represented by the Dirac operator over
an associated principal bundle and as the MKdV equation governs the ‘virtual’ motion of an
elastica and can be written by the Dirac operator over the elastica, the higher dimensional
soliton surface might be expressed by the Dirac operator and hence the Dirac field would
have a physical meaning.

This conjecture is supported by the discoveries and studies of Konopelchenko and
Taimanov. Using the Dirac operator, they investigated the surface itself and derived non-
trivial results [10–14]. The linear analytic system of Dirac operator [10–17], the differential
geometry [17, 21, 22] and integrable system [12, 13] are closely connected with each other
also in the two-dimensional system.

For the case of an elastica problem, both partition functions of the quantized Dirac field
defined over the elastica [6] and the quantized elastica itself [25] are described by the MKdV
hierarchy and the subalgebra of the affine Lie algebraA

(1)
1 [25, 31]. Behind them, Jimbo–

Miwa theory and Sato theory exist and using them one could express and unify theories
related to the elastica (and, of course, all one-dimensional solitons) [31]; it is expected
that using Sato theory, natural chain complexes in these theories related to the elastica
and MKdV hierarchy are interpreted as chain complex in the group acting on the universal
Grassmannian manifold (UGM). (However, it is also noted that they are substantially formal
theories and efficient only for a pinched Riemann surface; it does not lead us to find the
concrete solutions of the ‘virtual’ dynamics of the closed elastica associated with the Jacobi
variety of genusg > 1.)

Even though it is formal, the connections among the Dirac field, geometry and integrable
equation related to two-dimensional objects also should be interpreted as functors among
them and the associated morphisms in individual categories should be expressed by common
language and unified. In other words, it is important to search for such a hidden symmetry
like the group acting on the UGM for one-dimensional solitons and derive a theory to unify
them. We believe that this quantization of the surface and the quantization of elastica [25]
contribute to such studies.

Finally, we comment upon open problems related to this system. In [25], it was found
that at the critical point of the quantized elastica, a certain expectation value obeys the
Painlev́e equation of the first kinds. We question what equation appears at the critical point
in the quantized Willmore surface system. If one exists, it might be related to the higher
dimensional analogue of the Painlevé equation.

Furthermore, since the MNV equation is an initial value problem, more general
Riemannian surfaces can be allowed, at least as an initial condition, even though the energy
manifold of the inverse scattering system of the MKdV equation, which is embedded in the
MNV equation, is given as only hyperelliptic curves [35]. Hence, one may ask whether there
is an analytical connection between the general Riemannian surface or the general Fuchsian
group and the hyperelliptic function of the MKdV equation. If there is, this system should
be algebraically studied.
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